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SN TRANSPORT 

Important class of DoE codes 

Kripke/Ardra 

UMT/Teton/Kull 

Sweep algorithm – dominates performance at scale  

GPU optimization of Diamond-Difference Sweep on Uniform Mesh 

“Flux-register” or “Tiled-Hyperplane” 
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SN TRANSPORT 

RHS 

GEMM sweep 

Kripke’s version, in discrete form 

focus easy – use batched 
algorithms 
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DIAMOND DIFFERENCE SWEEP 
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SWEEP 

KBA 

Hyperplane 

single-thread (per direction-group) 
cannot fill the GPU 

no synchronization required 
bandwidth bound 

multiple threads (per direction-group) 
can fill  the GPU 

synchronization at every step 
expensive across SMs (kernel launch)  

bandwidth bound 
all fluxes need to be read/written from GMEM 
every step. 
(8 numbers – RHS, Psi, 3 input/output fluxes) 
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GPU FLUX-REGISTER SWEEP 

flux-register 
(hyperplane) 

flux-register 
(KBA) 

“Keep the fluxes in registers” 
x-fluxes in registers 
y-, z-fluxes in shared memory (SMEM) 
reduce GMEM bandwidth 
reduces bandwidth by ~4x (8->2, just RHS, Psi) 
limited to within an SM (i.e. SMEM) 
 

Synchronize only within the SM 
__syncthreads() 
very fast 
limited to within an SM (threadblock) 
 

1 SM/block sweeps entire local domain (xd-g) 
 
‘Column’ boundary data written to GMEM 

GMEM flux input/output boundaries 

‘column’ 
thread-

block/SM 

different 
columns 
same SM 
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GPU FLUX-REGISTER SWEEP 
(Visualization: David Appelhans IBM) 

16x16x16 zones local 
domain 
 
8x8 y-z ‘column base’ 
 
4 - columns 
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GPU FLUX-REGISTER SWEEP  

8x8 y-z column base x 16 directions 

Limited by registers  

53 registers per thread (also cache geometry/etc. in registers) 

16 kB of SMEM (of 48kB) 

50% occupancy  
 

16x16 y-z column base version (4 directions) 

¼ of data swept, ~½ sweep latency, ~½ throughput   

Options 
 

Sweep 15 groups simultaneously (on K40) 

15 SMs, each sweeping 16 directions and 1 group -> 16 blocks/groups per kernel 

Limiting kernels to 15 blocks permits synchronization with MPI transfer of fluxes 
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GPU FLUX-REGISTER PERFORMANCE 
Typical configuration: 

32 x 32 x 32 local zones, 16 directions per octant, 120 groups ( ~6GB on GPU) 
 

Relative Performance: Single node, full-app (incl. batched DGEMM) 

GPU flux-register performance = 7.2x vs. CPU (1x K40)  

GPU flux-register performance = 11x vs. CPU (2x K40)  
 

Absolute Performance: Single node  

Sweep latency = 1.8 ms  [or 800 usec]  

58% SOL (theo. eff.) for GMEM bandwidth (110 GB/s vs. 190 GB/s peak achieved)  

Opportunity to be 72% faster (Optimizations Remain!)  
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PORTABILITY 

Algorithmic portability 
 

“In fact, the KBA sweep is just the flux register sweep with a subdomain size of 
1x1 and the hyperplane sweep is the flux register sweep with a subdomain size of 
jmax x kmax. But how the algorithm maps this to threads is fundamental to the 
performance difference between these identical mathematical formulations, and 
thus is paramount to the portability.” 
 

Portable performant code needs to start with a portable performant algorithm 
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PORTABILITY 

Mapping algorithm to architecture 
  

GPU implementation 

Blocks operations to promote coalesced memory access (4 or 16 directions/groups) (memory 
architecture) 

Use registers for x-flux (memory architecture) 

Maximizes cooperative threadblock size 

Maximize occupancy (processor architecture) 

Use Shared Memory for y- and z-flux (memory architecture) 

Synchronize h-planes within threadblock (processor architecture) 

Size subdomains to fill SMs (processor architecture) 
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TILED HYPERPLANE SWEEP OPENMP4 

LLVM OpenMP4 compiler is young – excessive register allocation problem 
limits number of threads (for no spilling).  

162 registers/thread for no spilling. 

256 threads per block, 4 kb of shared memory per block. 

3 blocks per SM on K80 (register limited) 

Theoretical max occupancy: 37.5%. 

8x8 subdomain of zones, 4 directions per zone. 

David Appelhans, IBM, GPU Technology Conference 2016, S6513 – “GPU Optimization of the Kripke Neutral-Particle Transport Mini-App” 
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SWEEP COMPARISON 

David Appelhans, IBM, GPU Technology Conference 2016, S6513 – “GPU Optimization of the Kripke Neutral-Particle Transport Mini-App” 

Table: Table of sweep times for 32x32x32 zone domain, 96-128 directions per octant, 104-156 
groups. Multiple timings represent different group/direction set choices. CPU was dual socket, 
20 core POWER 8, all GPU results were for a single K80 (half a physical card).  
 

(normalized) 
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PORTABLE, PERFORMANT ALGORITHMS 

GPU flux-register sweep kernel 
(CUDA or OpenMP) 

CPU  hyperplane sweep  
kernel (OpenMP) 

Generic Caching Sweep alg.  
(OpenMP) 

have this have this 

? this comes from the 
other two ? 

specializable/tunable 
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PORTABLE, PERFORMANT ALGORITHMS 

GPU flux-register 
sweep kernel 

(CUDA or OpenMP) 

Generic Caching Sweep alg.  

have this have this 

? 4 children means this 
is different ? 

CPU hyperplane  
sweep kernel 

(OpenMP) 
Xeon Phi kernel other? 

specializable/tunable 
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SUMMARIZING 

Optimized sweep kernel written in CUDA 

Leverages many architectural features of the GPU 
  

OpenMP4 port  

Performs well on CPU & GPU 

Less performance than CUDA version on GPU 

Expect better performance when compilers use fewer registers 
  

Performance portability requires  

Performance portable algorithm 

Portable language exposing architectural features 


